فهرست مطالب
مجله هیدرولیک
سال هجدهم شماره 1 (بهار 1402)
- تاریخ انتشار: 1402/03/01
- تعداد عناوین: 8
-
-
صفحات 1-18در این پژوهش، آبشستگی پایین دست سرریز کلیدپیانویی ذوزنقه ای نوع A در جریان آزاد و مستغرق، به صورت آزمایشگاهی بررسی و ارزیابی شد. برای انجام آزمایش ها از فلومی به طول 10، عرض 75/0 و ارتفاع 8/0 متر استفاده شد. آزمایش ها با دبی های بین 30 تا 70 لیتر بر ثانیه، عدد فرود ذره بین 029/0 تا 058/0، عمق پایاب 13/0 متر برای جریان آزاد و 23/0 و 29/0 متر برای جریان مستغرق انجام شد. جنس بستر در پایین دست سرریز، ماسه ای با دانه بندی یکنواخت، قطر میانگین 2/2 میلی متر و به ضخامت 425/0 متر و طول 2 متر بود. نتایج نشان داد در جریان آزاد تغییرات بستر نسبت به جریان مستغرق با سرعت بیشتری انجام می-شود و عمق و طول حفره ی آبشستگی بیشتر می باشد. عمق آبشستگی نسبی با افزایش 77 درصدی عمق پایاب برای اعداد فرود ذره 029/0، 037/0، 045/0، 052/0 و 058/0، به ترتیب 42، 45، 21، 28 و 27 درصد و با افزایش 123 درصدی عمق پایاب، به ترتیب 95، 92، 90، 75 و 68 درصد کاهش می یابد. با افزایش 18 درصدی نسبت استغراق در عدد فرود ذره 029/0، و افزایش 96 درصدی نسبت استغراق در عدد فرود ذره 058/0، بیشینه عمق آبشستگی نسبی به ترتیب 92 و 56 درصد کاهش می یابد. محل وقوع بیشینه عمق آبشستگی در عمق پایاب 13/0، 23/0 و 29/0متر به ترتیب در فاصله ی 18/0 الی 30/0، 18/0 الی 36/0 و 03/0 الی 30/0 متری از پنجه ی سرریز، ایجاد شده است. با افزایش عدد فرود ذره، طول نسبی حفره ی آبشستگی افزایش یافته است.کلیدواژگان: آبشستگی، سرریز کلیدپیانویی، جریان آزاد، جریان مستغرق، نسبت استغراق
-
صفحات 19-36
انبساط مقطع می تواند راه حل مناسبی برای افزایش کار حوضچه های آرامش باشد. با این حال، در برخی از شرایط اجرایی، پدیده نامطلوب ناپایداری جریان می تواند منجر به جریان نامتقارن و تمرکز سرعت موضعی بیشتر در آبراهه (کانال) پایاب شود. این مقاله نتیجه انجام یک تحقیق تجربی با استفاده از چند سری تیرهای متقاطع، آزمایش شده در ترکیب بندی های هندسی و شرایط هیدرولیکی مختلف می باشد. در آغاز، اثربخشی این سامانه از نظر یکنواختی جریان و سرعت در بستر آبراهه تجزیه و تحلیل شد. کار سامانه، در شرایط پایاب با توصیف الگوهای جریان سه بعدی، با کاهش تدریجی سطح آب پایین دست به 70%، 80% و 90% عمق پایاب در شرایط مرجع آزمایش شد. اندازه گیری سرعت های سه بعدی برای تعیین فراسنجه های یکنواختی جریان، ضریب های مومنتم و انرژی، تجزیه و تحلیل توزیع سرعت های سه بعدی، انرژی جنبشی آشفتگی، بررسی های تکمیلی توسعه تمرکز خطوط هم تنش و افت انرژی پرش در شرایط آزمایش های مرجع و ترکیب بندی های بهینه، بررسی شد. نتایج نشان داد که افزون بر روند کیفی همانند β و α، که ضریب های تصحیح انرژی جنبشی و مومنتم به عنوان فراسنجه های اساسی بررسی یکنواختی جریان می باشند، همچنین مشاهده شد که سازه هدررفت انرژی در همگن سازی موثر جریان، حتی در شرایط سطح آب پایین دست متغیر نیز دارای عملکرد مطلوبی است. در جریان آشفته پس از سازه، برای فرود 5/9 و سه ترکیب بندی بهینه ، نوسان های سرعت در راستای افقی، عرضی و عمقی محاسبه شد و تغییرپذیرهای انرژی جنبشی آشفتگی (TKE) در برابر Z/Yt نشان داده شد و مشخص شد، تمرکز بیشترین میزان TKE درحالت پایاب hs9/0 قرار دارد. در بررسی خطوط تمرکز، میزان های 6/0~3/0≡ TKE درحدود 48/14 درصد بزرگی میزان های انرژی جنبشی آشفتگی جریان را دارا می باشند. در نهایت تحلیل افت انرژی نسبی پرش با استفاده از بیم های متقاطع نشان داد که بیشترین افت انرژی در ترکیب بندی 3 و در مقایسه با شرایط مرجع که روند افزایشی افت انرژی نسبی در آن تا فاصله 2 متری با شیب 41/11 ادامه دارد، به طور میانگین به میزان 78/44 درصد افزایش افت انژی نسبی را موجب می شود. لذا این سازه هدررفت انرژی با وجود انبساط مقطع و در عین پرهیز از گذاری های زیانبار آن توصیه می شود.
کلیدواژگان: انبساط ناگهانی، تیرهای متقاطع، پرش هیدرولیک فاصله ای، اتلاف انرژی، پرش هیدرولیکی، حوضچه های آرامش -
صفحات 37-49تحلیل یک بعدی جریان ماندگار در حالت غیردارسی موازی و شعاعی (همگرا) با استفاده از تیوری جریان های متغیر تدریجی و تحلیل دو بعدی آنها با استفاده از حل معادله پارکین صورت می گیرد. جهت تحلیل دوبعدی جریان ماندگار، به داده های فراوانی مانند شرایط مرزی در بالادست و پایین-دست و همچنین شرط مرزی پروفیل سطح آب نیاز بوده و روند محاسبات آن پیچیده و زمانبر است. به عبارت دیگر، تیوری جریان های متغیر تدریجی نسبت به حل معادله پارکین به داده های بسیار کمتری نیاز داشته و پروفیل سطح آب به دست آمده از آن نیز به عنوان اصلی ترین شرط مرزی در حل معادله پارکین مورد استفاده قرار می گیرد. اکثر پژوهش های قبلی جریان غیردارسی موازی را بررسی کرده اند. درحالیکه در پژوهش حاضر، برای اولین بار با استفاده از داده های آزمایشگاهی در مقیاس تقریبا واقعی (دستگاه آزمایش نیمه استوانه ای شکل به قطر 6 و ارتفاع 3 متر و 10 حالت مختلق برای عمق آب پمپاژ شده در بالادست) و تیوری جریان های متغیر تدریجی و رابطه ی نمایی بین گرادیان هیدرولیکی و سرعت جریان، پروفیل سطح آب جریان ماندگار در حالت جریان غیردارسی شعاعی با سطح آزاد بررسی شده است. نتایج بیانگر آنست که؛ متوسط میانگین خطای نسبی (MRE) 10 داده ی ثبت شده در آزمایشگاه برابر با 45/0 درصد محاسبه شده است.کلیدواژگان: جریان غیردارسی شعاعی، جریان ماندگار، تحلیل یک بعدی، تئوری جریان های متغیر تدریجی
-
صفحات 51-61سیستم ذخیره-احیاء آبخوان با استفاده از پساب، علیرغم مزیتهایی که دارد بر توان آبگذر محیطهای متخلخل غیراشباع و اشباع تاثیر منفی میگذارد. بررسی این موضوع در قالب طرح پژوهشی کاربردی ذخیره-احیاء سفرهآبزیرزمینی فشافویه انجام شد. مدل آزمایشگاهی به قطر 20 سانتیمتر، ارتفاع 2.5 متر (محیط غیراشباع) و طول 12.5 متر (محیط اشباع) در آزمایشگاه ساخته شد. جریانهای ورودیخروجی و بار آبی در طول مسیر جریان به مدت 70 روز اندازهگیری شد. در هفته اول میزان آب خروجی از lit/day 6.7 به lit/day 2.2 کاهش یافت و سپس مقدار آن به مدت 32 روز به طور نوسانی بین 2.6 تا 2.1 لیتر در روز متغیر بود. سپس طی 5 روز مقدار آن تا lit/day4.1 افزایش یافت و دوباره پس از 7 روز مقدار آن تا lit/day 2.1 کاهش یافت. کاهش میزان نفوذپذیری و هدایتهیدرولیکی و در پی آن دبی خروجی به دلیل گرفتگی منافذ خاک طی فرایندهای فیزیکی، شیمیایی و بیولوژیکی است نتایج نشان داد گرفتگی در ابتدا فیزیکی بوده و سپس با افزایش فعالیت باکتری ها و تولید گاز نیتروژن حاصل از فرایند دینیتریفیکاسیون گرفتگی منافذ بیشتر شده به گونه ای که میزان نفوذپذیری 70درصد نسبت به شرایط اولیه کمتر شد و سپس با کاهش فعالیت باکتریها میزان نفوذپذیری افزایش یافت. مطابق این نتایج در مدیریت ذخیره-احیاء آبخوان به این نکته باید دقت شود که با توجه به چرخه تغییرات نفوذپذیری و انتخاب دوره آیش مناسب برنامه ریزی دقیقی جهت تغذیه پساب در طول زمان در آبخوان انجام شود تا سیستم به طور پایدار در بلندمدت بتواند کارایی خود را حفظ کند.کلیدواژگان: آزمایشگاهی، هدایت هیدرولیکی، منافذ، ناحیه غیراشباع - اشباع
-
صفحات 63-79
معادلات دیفرانسیل جزیی سنت ونانت ، شبه خطی و هذلولی هستند و در تحلیل و توصیف جریان در مجاری باز کاربردهای وسیعی دارند. در این پژوهش، برای مدل سازی کانال ها و رودخانه های طبیعی روش تحلیلی جدیدی در حوزه فرکانس ارایه شده است که در آن معادلات هذلولی سنت ونانت خطی شده، با استفاده از سری فوریه و روش ماتریس انتقال حل می شوند. در این مدل، جریان غیرماندگار و غیریکنواخت با شرط مرزی هیدروگراف اشل در بالادست، منحنی دبی-اشل در پایین دست و جریان جانبی متمرکز بررسی می شود و نتایج آن با مدل های آزمایشگاهی، تحلیلی و عددی موجود مقایسه می گردد. در نتیجه ملاحظه می گردد که مدل ارایه شده با شاخص ناش ساتکلیف (Nash-Sutcliffe) برابر با 99/0، دقت بیشتری نسبت به مدل های تحلیلی پیشین با شاخص 98/0 دارد. بعلاوه زمان اجرای آن بسیار کمتر از مدل عددی پریسمن در همین شرایط است. مدل حاضر بدون قید و شرط پایدار است و برای پیش بینی و هشدار به موقع سیل و بهینه سازی مناسب می باشد.
کلیدواژگان: حوزه فرکانس، تبدیل فوریه سریع، موج دینامیک، روش ماتریس انتقال، جریان ناپایدار -
صفحات 81-104سرریزهای پلکانی از طریق ایجاد سطح مقاومتی و زبری پله ها در برابر جریان عبوری از خود، باعث استهلاک انرژی می شوند. در این تحقیق طرح اصلاح پله ها از طریق ایجاد المان های مکعبی شکل بر روی پله در آرایش های مختلف و شرایط هیدرولیکی متفاوت به منظور بهبود عملکرد سرریزهای پلکانی از طریق افزایش میزان استهلاک انرژی درنظرگرفته شده است. بدین منظور و با استفاده از نرم افزار FLOW-3D، تاثیر المان های روی پله بر روی نحوه توزیع سرعت، فشار، میزان انرژی جنبشی تلاطم و در نهایت میزان استهلاک انرژی جریان روی سرریز های اصلاح شده بررسی و با سرریز پلکانی ساده مقایسه شده است. نتایج عددی نشان داد که ایجاد المان های روی پله، باعث برخی نوسانات بر روی سطح جریان و افزایش شدت برخورد جریان از طریق انحراف تیغه های جریان از مسیر موازی خود می شوند. ایجاد المان های روی پله، باعث کاهش سرعت تا حدود 10 درصد، افزایش انرژی جنبشی متلاطم تا 54 درصد و افزایش 6.42 درصدی استهلاک انرژی در مدل های اصلاح شده نسبت به مدل پلکانی ساده گردید. بر روی وجه افقی پله ها فشار منفی وجود نداشت و فشار حداکثر در اواسط پله و متمایل به انتهای پله روی می دهد. وجود المان ها بر روی پله، باعث کوچک تر شدن نواحی فشار منفی در وجه قایم سرریز پلکانی می شوند و خطر ایجاد پدیده کاویتاسیون را کاهش می دهند. مدل المانهای ترکیبی در بین آرایش ها بهترین عملکرد را داشته و کاهش ارتفاع المانها باعث بهبود رفتار آن ها می شود.کلیدواژگان: سرریز پلکانی اصلاح شده، توزیع سرعت، کانتور فشار، انرژی جنبشی متلاطم، استهلاک انرژی، مدل عددی
-
صفحات 105-125یکی از راه کارهای کاهش عمق آب شستگی در پایین دست سازه های ریزشی نظیر سرریزهای پلکانی، استفاده از کف بند می باشد. در تحقیق حاضر تاثیر نصب کف بند در پایین دست سرریز پلکانی با و بدون آب پایه کنگره ای با شیب های 1:2 و 1:3 بر تغییرات عمق آب شستگی در پایین دست آن به صورت آزمایشگاهی مورد بررسی قرار گرفت. آزمایش ها برای شرایط مختلف دبی، هندسه آب پایه ها و طول کف بند صورت پذیرفت. تجزیه و تحلیل نتایج نشان دادکه در سرریز پلکانی با شیب 1:2 و در دامنه دبی های حداقل و حداکثر با افزایش طول کف بند به دو سوم ارتفاع سرریز، عمق حداکثر نهایی آب شستگی در شرایط بدون آب پایه به ترتیب به میزان 23 و 34 درصد کاهش یافت. مقایسه نتایج حاکی از آن است که با نصب آب پایه، در بهترین عملکرد آن، مقدار عمق حداکثر نهایی آب شستگی در دامنه دبی های حداقل و حداکثر به طور متوسط 50 درصد نسبت به شرایط بدون آب پایه کم شد. با تغییر شیب کارگذاری پلکان های سرریز به 1:3، افزایش طول کف بند به دو سوم ارتفاع سرریز، عمق حداکثر نهایی آب شستگی را در دامنه دبی های حداقل تا حداکثر و برای شرایط بدون آب پایه به ترتیب به میزان 36 و 43 درصد کاهش داده و با نصب آب پایه بر روی پلکان های سرریز، مقدار عمق حداکثر نهایی آب شستگی به طور متوسط 52 درصد نسبت به شرایط بدون آب پایه کم شد.کلیدواژگان: کف بند، رژیم جریان، سازه های کنترل تراز بستر، سرریز پلکانی، آب شستگی
-
صفحات 127-142در این تحقیق از سرریزهای کلید پیانویی که از مزایای آن می توان به ضریب دبی و راندمان دبی بسیار بالا، امکان کاهش ارتفاع سد، سرعت در اجرا و صرفه اقتصادی نام برد. این سرریزها، بهترین گزینه برای اجرای سرریز سد در حالت جریان آزاد هستند. در این تحقیق با توجه به امکانات آزمایشگاهی موجود، میزان جریان عبوری به صورت تدریجی و در گام های زمانی مشخص افزایش یافت و تحت این شرایط با ارایه یک روش تحلیلی به تعیین ضریب دبی جریان در سرریز کلیدپیانویی پرداخته شد. آزمایش های این پژوهش، در کانال تحقیقاتی مستطیلی شکل با طول 10 متر و عرض 6/0 متر انجام شده است. در تحقیق حاضر، سه نوع سرریز کلید پیانویی مستطیلی نوع A با ارتفاع های متغیر15،10و20 سانتی متر و سایر پارامترهای هندسی ثابت در محدوده دبی 30 تا 50 لیتر بر ثانیه تحت بازه تغییرات دبی 3،5و1 لیتر برثانیه و بازه تغییرات زمانی 10،5و15 ثانیه مورد مطالعه قرار گرفته است. بنابراین در این تحقیق در 27 شرایط هیدرولیکی متفاوت به بررسی تاثیر تغییرات ارتفاع بر نمودار های دبی-اشل، ضریب دبی و سایر پارامترهای موثر بی بعد پرداخته شده است. در نهایت نتایج حاکی از آن بود که، با افزایش ارتفاع سرریز، شیب نمودارهای دبی-اشل افزایش یافته است. هم-چنین با افزایش ارتفاع سرریز، ضریب دبی افزایش و در مقابل عدد فرود و نسبت ارتفاع آب به ارتفاع سرریز کاهش یافته اند. در نتیجه ارتفاع سرریز با ضریب دبی رابطه مستقیم و با عدد فرود و ارتفاع آب در ورودی و بالادست سرریز رابطه عکس دارد.کلیدواژگان: سرریز کلید پیانویی، ضریب دبی، جریان غیردائمی-متغیر تدریجی با افزایش دبی
-
Pages 1-18IntroductionWeir is a structure that is made in the body or support of the dam to safe drain the excess volume of water in the tank. Weirs are mainly considered for free flow mode, but in some cases there is a possibility of immersion in them. Submersion in weirs occurs in two general and local ways. General submersion will occur if the downstream water level is higher than the weir crown level. This is more likely to occur for weirs in canals and rivers and if the weir acts as a diversion dam. Local submersion is observed in the downstream part of weir due to local flow conditions. Weirs are divided into linear and non-linear weirs based on the shape in the plan. Piano key weirs are the newest type of non-linear weirs which recently due to its advantages. Non-linear Piano Key Weirs enjoy not only a higher water passage but also a relatively simple and economic structure compared to linear weirs.MethodologyAll experiments of this research were performed in a channel with a long 10 m, wide 0.75 m and high 0.8 m in Tarbiat Modares University hydraulic laboratory. A view of the laboratory flume is shown in Figure (3). The required water was supplied through an underground reservoir. In this research, trapezoidal piano key weir types A, made of thermoplastic with a thickness 1.2 m, slope of the input and output keys 28 degrees and a height 0.2 m was used. The weir has 6 keys (3 input keys and 3 output keys) with the same slope in the input key and the output key. Uniform bed materials with an average diameter 2.2 mm were used. Flow discharge was measured with an ultrasonic flowmeter and flow depth and bed level were measured with a laser level gauge. According to the selected discharges, the flow depth upstream of the weir was considered to be more than 3 cm so that the effect of surface tension is not significant. In this study, experiments were performed with five discharges 30, 40, 50, 60 and 70 liters per second. Under submerged flow for each discharge, two percent submersion and under free flow for each discharge, the tailwater depth was considered to be 0.13 m.Results and discussionFlow characteristics are affected in case of weir submersion. During the test, after the flow hit from the input switch to the tailwater surface, due to the amount of tailwater depth, surface rotations (at low tailwater depth) and surface turbulence (at high tailwater depth) are observed. Part of the flow moves downwards and after hitting the bed surface, a weak rotational zone is created in the range of the input switches. The flow enters the downstream in the form of a submerged jet after the output switch and, due to the momentum to the upper fluid, causes a severe rotational zone in the range of the output switches. In the free flow, more turbulence is observed in the range of the output switches due to the intersection of the flow passing through the weir lateral wall and the falling current from the upstream and downstream crowns. Less tailwater depth in free flow limits the deep growth and development of the sedimentary hill in downstream of the scouring hole, and sedimentation occurs with longer length and lower elevation. However under the submerged flow, due to the greater tailwater depth and lower fall height, the flow strength is more depleted and the flow strikes the bed with less energy, and result in less scouring. In this case, the flow does not have the power to transfer all the sediments to the downstream and most of the sediments accumulate on top of each other and a sedimentary hill is created as a point. As a result, a sedimentary hill with a higher height and less length is visible under submerged current than free flow. Therefore, in the free flow than in the submerged flow, the length and depth of the scour hole occur more, and sedimentation occurs with less height and longer length. Under submerged flow, most of the sediment bed remains unchanged, while under free flow most of the sediment bed is affected by scouring and sedimentation. Of course, changes vary depending on the hydraulic conditions. In the early times, in both free and submerged currents, scouring occurs with greater intensity, but over time, its severity decreases and scouring reaches a stable state. In this case, sediments are rarely transported downstream. The surface of the sedimentary hill downstream of the scour hole in the open stream is almost smooth and in the submerged stream is sharp.ConclusionThe results showed that most of the scour hole changes occur in 20% of the initial time of the experiment and the changes in the free flow are faster than the submerged flow. The depth and length of the scour hole in free flow is greater than in submerged flow. Relative scour depth with increasing 77% in tailwater depth for Froude numbers of particle 0.029, 0.037, 0.045, 0.052 and 0.058, respectively 42, 45, 21, 28 and 27% and with increasing the tailwater depth 123% is reduced by 95%, 92%, 90%, 75% and 68%, respectively. With increasing 18% in the submersion ratio in the Froude number of particle 0.029 and increasing 96% in the submersion ratio in the Froude number of particle 0.058, the maximum relative scour depth decreases by 92 and 56%, respectively. The location of the maximum scouring is also a function of Froude number of particle and the tailwater depth. Maximum scour depth at the tailwater depth 0.13 m at a distance 0.18 to 0.30 m from the weir toe, at the tailwater depth 0.23 m at a distance 0.18 to 0.36 m from the weir toe and at a tailwater depth 0.29 m is at a distance 0.03 to 0.30 m from the weir toe.Keywords: Scouring, piano key weir, Free flow, Submerged flow, Submersion ratio
-
Pages 19-36
Laboratory study of crossbeam structural design in control of asymmetric S- type jump of sudden expansion sectionsIntroduction This paper presents an experimental study on a proposed dissipation structure, which consists of a series of cross beams, tested in different geometric configurations and hydraulic conditions. First, the effectiveness of this system was analyzed in terms of uniformity of flow and bed velocity and while, observing the dissipating mechanisms, in the next step, the system performance under variable tail water conditions by describing the three-dimensional flow patterns observed in the downstream channel with a gradual decrease in downstream level to 70%, 80% and 90% of tail water depth in the conditions the reference experiments were tested. Measurement of three-dimensional velocities to determine the parameters of flow uniformity, momentum and energy coefficients, and analysis of three-dimensional velocity distributions, turbulent kinetic energy, and supplementary studies on the development of isothermal line concentration and drop energy losses of reference experiments and optimal case compositions were examined. The results showed that in addition the similar qualitative trends of β and α, the flexibility of the dissipation structure has a high efficiency in the effective homogenization of the flow in the abrupt expansion channel, even in the downstream water level conditions.Methodology The experiments were performed in the hydraulic laboratory of Shahid Chamran University of Ahvaz and in a horizontal rectangular open channel with a length of 12 m and a width of 1 m with a height of 0.87 meters. Flow supply was provided through an open tank with dimensions of 7 m by 5 m at a height of 2.5 m. Hydraulic S-jump was performed with sudden expansion and design and construction of ogee weir. With the formation of S-jump, the conditions for the depth of hS downstream in the end control section were set, equal to 0.19, 0.15 and 0.11 m, respectively, to create three 7.4, 8.7 and 9.5 Froude numbers. Measurement of longitudinal velocity at a fixed height of 0.5 cm from the bottom of canal and longitudinal sections of 0.25 from each other in the first 2 m of downstream canal, and the other ones at distances of 2.5, 3, 4, 6 and 8 m from sudden expansion. Finding the best configurations to achieve a uniform flow and reduce the velocity distribution was done in most of the critical areas downstream of structure. For the levels of reference experiments, 54 geometries of the energy dissipation system with different configurations of beam distances, s, number of beams, N, hb height, position of the first beam from expansion, P, and slope of the system, θ, were investigated. Each component of the structure includes an I-shaped beam, with a flange width of 1.5 to 2.5 cm, depending on the hb, in the direction of the channel width and vertically in the direction of the main stream. Results and Discussion The results showed the values of βb and vmb2. βb calculated for three Froude numbers and different geometric parameters of the system, which means the absolute distance of 1.65, 1.85, and 2.55 meters from the expansion section for P = 0.4, 0.6, and 0.8 meters, respectively the effectiveness of the system (beam configurations) in homogenizing the flow and reducing the bed velocity is clearly evident, even for the worst performance settings. When using the structure, the mean βb is almost less than 1.1 with vmb2; the corresponding βb was measured to be approximately 0.1 m2/s2. According to the observed efficiency of the beam system, 3 of the best performance settings of the structures were selected for Fr = 9.5 (which was the most difficult situation regarding the energy characteristics of the input current) to the flow characteristics along with the flow and downstream of the structure. Energy dissipation should be fully described. According to research results, the qualitative trends of β and α are similar. Three-dimensional velocity distribution analysis showed that this type of structure has the flexibility to effectively homogenize the flow in abruptly expanding channels, even in the conditions of downstream water level varieties.Investigation of the turbulence kinetic energy, smaller vortices that contribute to turbulence at the surface and promote mixing in the flow interface until they reach maximum value during the study period, which was from x = 0.3 m to x = 2 according to the definition of the ratio of energy losses to initial energy as a relative energy loss or jump efficiency (η), it was found that in all tested Froude numbers, the trend of increasing relative energy loss to a cross-section of 2.5 m after expansion section was increasing. Approximately X/Xexp = 4 reaches its peak and extends with a constant almost linear trend to the end of the section and the end.Conclusion In this research, a laboratory simulation application of a new structure with different geometric configurations of cross beams as a series of wide-wing beams to control asymmetric S-jump of sudden expansion sections was experienced. The use of different geometric configurations of cross beams shows the effectiveness of beams' contribution in homogenizing flow and reducing bed velocity.. The concentration of turbulent flow caused by the jet hitting the beam system, particularly the first beam, leads to a significant energy loss in the area between the first and 2nd beams. Before leaving the main system, the bubbles, leaving the system energy in the same evacuate the area and saw a calmer flow in after areas of the structure. The study of turbulent kinetic energy showed that the conversion rate of the high state from the mainstream after the beams (Conversion of mean flow) to turbulent flow occurs in some cases. Also, in all Froude numbers of reference experiments, the trend of increasing the relative energy loss to a cross-section of about 2.5 m after cross-section expansion is increasing. KeywordsSudden expansion, cross beams, hydraulic S-jump, flow patterns, energy dissipation, hydraulic structures, stilling basin.
Keywords: Sudden expansion, cross beams, hydraulic S-jump, Energy dissipation, Stilling basin -
Pages 37-49IntroductionNon-darcy flows into two categories: parallel flows (such as gravel dams, gabions, etc.) and radial flows (such as flows near wells drilled in coarse-grained alluvial beds, etc.) are divided. In the first category, streamlines are almost parallel so that there is no curvature or contraction of streamlines in the plan view. This type of flow is found in both pressurized and free-surface modes. Radial non-darcy flow analysis has many applications in the fields of civil engineering, geology, oil, and gas. The equations governing the radial non-darcy flow are solved using numerical methods of finite differences, finite elements and finite volumes. Solving these equations requires boundary conditions and a lot of data and is almost bulky, time consuming and costly. While, gradually varied flow theory, requires much less data and is easier and less expensive. For this reason, in the present study, for the first time, using experimental data recorded in a large-scale (almost real) device, the application of the gradually varied flow theory in radial non-darcy flows with free surface has been investigated. In other words, since the calculation of water surface profiles in a radial rockfill is of great importance. In the present study, using large-scale (almost real) experimental data and the gradually varied flow theory, the water surface profile in radial non-darcy flow with free surface and in steady state has been investigated.MethodologyIn the present study, due to the compatibility of cylindrical coordinates and its adaptation to the physics of problems related to radial flows, a device has been constructed in the laboratory of Bu Ali Sina University in the form of a semi-cylinder with a diameter of 6 meters and a height of 3 meters. The dimensions of this device are made on a large scale and the effects limitations have practically no effect on the testing process. To measure piezometric pressure, piezometric grids have been used. The device has a volume of 14,000 liters and a capacity of materials weighing approximately 40 tons. Four pumps are installed in parallel at the top of the device to generate the required flow. Coarse-grained river materials with a diameter between 2 to 10 cm, a porosity of 40%, a Cu of 2.13, and a Cc of 1.016 have been used. To perform the tests, the model is first filled to a certain height (53, 60, 70, 85, 95, 110, 120, 140, 150, and 160 cm) by pumping operations. The flow rate created in these experiments is in the range of 49.94 to 53.16 L/s.Results and DiscussionOne-dimensional analysis of steady-non-darcy flow using gradually varied flow theory and two-dimensional analysis using Parkin equation solution. Most research has been done in parallel flow rockfills. Also, solving the Parkin equation in both parallel and radial flows requires a lot of data such as boundary conditions upstream and downstream, as well as the boundary condition of the water surface profile, and the calculation process is complex and time-consuming. The gradually varied flow theory requires much less data than solving the Parkin equation, and the water surface profile obtained from it is also used as the main boundary condition in solving the Parkin equation. In other words, calculating the water surface profile in a radial rockfill is very important to studying the movement of water. Also, the water surface profile is the main boundary condition in the two-dimensional analysis of steady flow (solving the Parkin equation), and with it, upstream and downstream boundary conditions will be practically available. For this reason, in the present study, using large-scale (almost real) experimental data and the gradually varied flow theory, the water surface profile in the case of radial non-darcy flow has been calculated. To calculate the flow depth at different points (water surface profile) using the gradually varied flow theory, the amount of flow depth at one point and the coefficients m and n must be available. Since the flow depth measurement in the well (downstream of the desired interval) can be measured, in the present study, the calculations started from the downstream (depth of flow in the well).ConclusionIf the gradually varied flow theory is used to calculate the water surface profile in the case of radial non-darcy flow with a free surface, the mean relative error in the case of pumped heights is 53, 60, 70, 85, 95, 110, 120, 140, 150 and 160 cm are equal to 1.56, 0.96, 0.61, 0.45, 0.28, 0.19, 0.13, 0.16, 0.11 and 0.05 are calculated, respectively. In other words, the average mean relative error (MRE) of calculating the water surface profile for different heights of pumped water is equal to 0.45%. Also, according to the obtained results, the greater the depth of water pumped upstream, the higher accuracy of the gradually varied flow theory.KeywordsRadial Non-Darcy Flow, Steady Flow, One-Dimensional Analysis, Gradually Varied Flow Theory.Keywords: Gradually Varied Flow Theory, One-Dimensional Analysis, Radial Non-Darcy Flow, Steady flow
-
Pages 51-61Extended Abstract:IntroductionThe permeability of porous media due to clogging of pores is one of the problems of aquifer storage and recovery (ASR) systems. The more pore clogging occurs when treated wastewater is used as water resources for ASR In addition to physical clogging, the biological clogging also plays an important role in reducing the permeability and hydraulic conductivity of the porous media. In most of previous studies, the infiltration and clogging of the unsaturated zone have been evaluated by measuring the input-output flow from the soil columns. In this study, the permeability and hydraulic conductivity variations due to the passage of treated wastewater through the unsaturated and saturated zone have been evaluated simultaneously.MethodologyThe main goal of this study is the investigation of permeability and clogging variations in unsaturated-saturated zones in the aquifer storage and recovery system using the treated wastewater. For this study, an experimental model was designed with 2.5 m vertical height (unsaturated layer) and 12.5 m horizontal length (saturated layer). It was made with a PVC pipe with a diameter of 200 mm.Results and discussionThe input-output flow rates had been measured for a period of 70 days. The reduction of inlet and outlet flow is due to physical and biological clogging of soil pores. The physical clogging usually occurs earlier and in the early parts of the model and then there is a gradual decrease of infiltration velocity and hydraulic conductivity. The rate of increase of biological clogging is slower than physical and with the growth of bacteria, its amount increases to a constant rate. Then, as the bacterial population decreases, the flow rate in the porous media increases and results in a temporary increase in permeability and outlet flow rate. The bacterial growth cycle in a closed environment consists of four stages. This growth pattern corresponds to the fluctuations of the discharge output from the end of the setup. In the first stage (lag phase) when the bacterial population is the smallest, the output discharge is maximum. Then, entering the second stage (log phase), the bacterial population increases up to the maximum. With this increase in growth, the output discharge is reduced to a minimum. After that, the bacterial population enters the third stage (stationary phase) and their population remains constant, and the output discharge in this stage is also almost constant. Then the growth of bacteria enters the fourth stage (death phase) and some of the bacteria die to regain balance and the output flow increases to an almost constant value. This bacterial growth cycle and discharge output continues. In fact, what causes biological clogging is the activity of bacteria. The gases produced by their activity clogged some of the pores of the porous medium. The nitrate concentration decreases to some extent as the treated wastewater passes through the unsaturated soil. Then, as it continues to move in the saturation zone, its concentration decreases much more and at a distance of 7 meters from the beginning of the setup, its value reaches less than 0.5 mg / liter and this concentration is almost constant at the end of the path. The main reason for the large decrease in nitrate concentration is due to denitrification phenomenon. This is also hydraulically justified by the height of the water inside the piezometers along the flow path. The hydraulic head had many fluctuations in piezometers, which are largely proportional to the output flow fluctuations. The quantitative (inlet and outlet flow and pressure) and qualitative (nitrate concentration) measurements on the model indicate the types of clogging in the porous media.ConclusionThe output flow of the experimental model after two days from the start of injection reached its maximum value of about 6.7 liters per day and after 6 days began to decrease to about 2.6-2.1 liters per day and had a variation of the same range for about 30 days. Then, its amount has been increased to 4.1 liters per day for 6 days and decreased to 2.1 liters per day in 70 days after the injection. The hydraulic conductivity of the soil also changes in proportion to the changes in the output flow. Before injecting the treated wastewater into the soil column, the amount was 1.32 meters per day and gradually decreased to 0.47 meters per day. The maximum and minimum soil permeability is 14.8 and 4.33 cm per day, respectively. After the injection of treated wastewater, over time, part of the pores of the porous medium is clogged for physical, chemical and biological reasons and reduces the permeability. This permeability reduction can initially be up to 70%, which is the simultaneous effect of three factors of physical, chemical and biological clogging, but with the entry of bacteria into the fourth phase, the effect of biological clogging decreases and the permeability increases so that the penetration rate is 35% less than its original value. If the clogging of the pores is physical, the reduction of permeability and hydraulic conductivity becomes almost permanent, but if the clogging is biological, the reduction of permeability and hydraulic conductivity is temporary. Therefore, a cycle of biological clogging changes in the treated wastewater injection system and using the dry and wet interval periods in accordance with this cycle, the performance of injection ponds can be significantly increased in terms of quantity and quality.Keywords: Hydraulic conductivity, Clogging, Laboratory, unsaturated - saturated
-
Pages 63-79Introduction
The shallow-water equations in unidirectional form namely as Saint Venant equations (SVE) are a set of quasi-linear hyperbolic partial differential equations, having a wide range of applications in open channel and river flow analysis. Because of intrinsic non-linearity, there are no analytical solutions for these equations in most practical applications except for simplified versions. On the other hand, numerical solutions by finite difference or finite element methods are time-marching and for forecasting and timely management of floods are relatively lengthy and time-consuming. Recently, new solutions of SVE in frequency domain, using Laplace Transform (LT) or Fourier Series (FS) have been proposed to overcome these difficulties. In the LT method, input wave is converted into a unit hydrograph, a unit step, or a unit pulse. Despite of unconditional stability, the accuracy of this method depends on time step of decomposition of input information. In this research, however, the FT method is proposed to reduce the execution of real-time flood forecasting. Unlike finite difference models, this is not a marching method and the results may be generated at a given time, directly. Moreover, there is not any restriction in the decomposition of input data due to their independence from time.
MethodologyThe complete form of SVE, namely as full dynamic equations are used in the present work. Initial conditions are non-uniform and the up-and downstream boundary conditions are inflow hydrograph and stage-discharge rating curve. SVE are linearized around a steady-state situation using the Taylor expansion. Assuming that the changes in water depth and discharge follow a sine pattern, the linear equations of continuity and momentum are transferred from time domain to frequency domain using the FS and sine functions. The input wave to the model, not necessarily harmonic and periodic, is converted to a set of periodic waves using Fast Fourier Transform (FFT). Considering the initial condition of non-uniform flow in the model, the channel is divided into some intervals that may have equal or non-equal lengths with uniform flow at each part. All channel characteristics such as mean flow depth are computed at each interval separately. Then, transition matrices are constructed to interconnect the channel intervals at the boundaries. Finally, the frequency response of flow discharge and water level are obtained at each part of the channel.
Results and discussionThis method could be used for all kinds of prismatic and non-prismatic channels, natural rivers with various types of flow (critical, sub-critical, and super-critical), different boundary conditions at the up- or downstream ends, and point or distributed lateral inflow. Rashid and Chaudhry (1995) performed their experiments in a rectangular flume. The flow was unsteady and non-uniform. FFT was used to decompose the input hydrograph into a complex sum of periodic waves. In this research, 256 waves with a frequency of 0.002 to 0.5 were used for accurate matching between the input hydrograph of the laboratory model and the hydrograph of the total waves analyzed by the fast Fourier transform. The result of the proposed method was compared with laboratory results of Rashid and Chaudhry, analytical model of Cimorelli, and numerical method of Preissman in time domain. The Nash–Sutcliffe efficiency coefficient (NSE) in the present study is more accurate than other models and in stations (2) and (5) are equal to 0.9893 and 0.9872, respectively. The peak of hydrograph in our model is more than the Cimorelli analytical model. The lag time of mean peak of hydrograph in the model is equal to the experimental results of Rashid and Chaudhry (1995). Execution time of the model is 11.84 seconds in comparison with Preissmann implicit method that is 54.48 seconds with the same computer. This run time is important in forecasting and warning models of floods. Visual comparison of theoretical and experimental hydrograph curves are satisfactory.
ConclusionsThe proposed method is unconditionally stable. Full dynamic unsteady flow equations of Saint Venant is solved using FFT and Transition Matrix. The upstream boundary condition is stage-hydrograph and the downstream boundary condition is a stage-discharge relationship. The effects of lateral inflows and non-uniform initial conditions are considered in the model. To evaluate the accuracy of the model, the results compared with experimental data of Rashid and Chaudhry, analytical model of Cimorelli and numerical model of priessmann in time domain, were satisfactory both quantitatively and qualitatively. Regarding the unconditional stability and the appropriate run time of computer, the code is suitable for flood forecasting, warning and optimization models. This method can be used to analyze the flow in natural rivers and irrigation canals with any type of flow regime
Keywords: Fast Fourier Transform, Frequency Domain, Saint Venant Equations, Transfer matrix method, Unsteady flow -
Pages 81-104IntroductionStepped spillways are a common structure for energy dissipation by creating frictional resistance to flow through the steps. Based on the studies and depending on flow conditions, the flow over a stepped spillway is usually categorized into three regimes: nappe, transition, and skimming. The stepped spillway is often designed for skimming flows. There were different studies investigating various aspects of stepped spillways, but what is important in this type of spillway is increasing the effectiveness of steps in the rate of energy dissipation. This can be done by a new type of step structure (i.e., inclination angles on steps or using a sill on the edge of a step and cases like that) or geometric alteration and change of steps called labyrinth stepped spillways. Therefore, it is scientifically beneficial to modify the shape of the step of the stepped spillway to increase its collision and roll to achieve energy dissipation. The present study deals with the design of step modification by creating cubic elements on the steps in different arrangements and different hydraulic conditions. This has been considered to improve the performance of stepped spillways by increasing the energy dissipation. For this purpose, using FLOW-3D software, the influence of geometric appendance elements on the steps on the velocity distribution, pressure, the turbulent kinetic energy (TKE), and finally the flow resistance and the energy dissipation on modified spillways was investigated and compared with the flat stepped spillway.MethodologyThe physical model for verifying the numerical results was carried out in a rectangular flume with a length of 12 m, a width of 1.2 m, and a height of 0.8 m. The experiments were conducted on a stepped spillway with a slope of 26.60° and consisted of 10 steps with step length (l) and height (h) of 0.06 and 0.12 m, respectively. Stepped spillway models in numerical study include flat models and models with cubic elements placed on the steps in four arrangements of two side, zigzag, center, and hybrid AE elements and two heights of elements h/2 and h/4 (h step height). The commercially available CFD program FLOW-3D was used for the numerical simulations. The RNG k-ε turbulence model was employed for the turbulence calculations. To obtain mesh-independent results, three different mesh sizes were used, and the grid convergence index (GCI) methodology was employed to select the appropriate mesh. As a result, the mesh consisting of a containing block with a cell size of 1.3 cm and a nested block of 0.95 cm was selected. In the fluid domain, the boundary conditions were set according to the experimental conditions. In the upstream of the domain, a discharge flow rate (Q) definition was set. The downstream section was treated as an outflow (O) boundary condition. The bottom and the sides behave as rigid walls (W). For the upper boundary, the atmospheric pressure boundary, and at the inner boundary conditions, symmetry (S) was used.Results and DiscussionThe results showed that the appendance elements on the steps cause some fluctuations on the flow surface and increase the intensity of the current collision by deviating the flow from its parallel path. The result is reduced velocity by about 10%, an increase of 54% in TKE, and an increase of 6.42% in energy dissipation on modified models compared to the flat stepped model. There was no negative pressure on the horizontal plane of the steps, and the maximum pressure occurred in the middle of the steps and inclined to the end of the steps. The appendance elements reduce the negative pressure areas on the vertical surface of the steps and reduce the risk of cavitation. The hybrid element model performs best in other arrangements, and reducing the height of the elements improves their behavior.ConclusionAccording to the obtained results, it can be concluded that the appendance elements on the steps improved the hydraulic performance of stepped spillways by increasing the roughness of the steps, increasing energy dissipation, reducing the flow velocity over the spillway and reducing the risk of cavitation by reducing the negative pressure in the vertical plane of the steps. The use of cube-shaped elements on the steps and in the hybrid arrangement is suggested.Keywords: Modified stepped spillway, Velocity Distribution, Pressure contour, Turbulent kinetic energy, Energy dissipation, Numerical Model
-
Pages 105-125IntroductionThe movement of water flow in rivers and streams of the erodible bed causes the cycle of erosion and sedimentation. Although this is a natural process, its occurrence occurs along sections of a river course that conflict with different uses, ranging from agricultural damage to structures built along rivers or riverbeds (Esmaeili Varaki et al., 2021).Stepped weirs are one of the effective structures in flow energy dissipation. Due to their shape and geometry, these structures implement to reduce energy and erosive power of water flow and also to reduce the cost of energy consuming structures that should be built downstream of dam weirs (Chanson, 1995; Khatsuria, 2005). In the present study, the simultaneous effect of creating an apron at the downstream of a stepped weir and installing sills with different geometries on its stairs on the downstream scour depth under different flow conditions and apron length was examined in a laboratory.MethodologyThe experiments of this research were performed in the hydraulic laboratory and physical-hydraulic models of the Department of Water Engineering of the University of Guilan in a flume of 12.5 meters long, 1.5 meters wide and 1 meter high with glass walls and metal floors. In order to provide the flow rate, a centrifugal pump was used that can provide a flow rate of up to 90 L/s. In this research, two different weir slopes (1:2 and 1:3), aprons with lengths of P/3 (0.135 m) and 2P/3 (0.27 m) and sill with different geometries, were examined. In order to supply sediment particles, mineral sand with a uniform diameter of 2.68 mm was prepared and placed in the sediment bed with a length of 2 m, a width of 1.5 m and a height of 0.3 m at the downstream of the weir. Long term experiment was conducted to find the corresponding time of equilibrium scour depth. Comparison of results showed that after 6 hours, the scour depth reached equilibrium condition and no noticeable change occurred, so in all experiments, measurements were performed during the mentioned period. For each experiment, after installing the weir, the sills and aprons the downstream sedimentary bed was leveled. Then, according to the desired flow, the necessary adjustments were made for the relevant engine speed. After the flow entered the flume, the flow depth gradually increased and by adjusting the downstream tail gate, desired tail water depth was adjusted. In each experiment, instantaneous scour profiles were recorded at 5, 10, 15, 30, 45, 60, 90, 120, 180, 270 and 360 minutes from the start of the experiment using digital camera and then digitized using Grapher9 software. The final scour profile was also measured at the end of each experiment using a laser meter with an accuracy of ± 1 mm.Results and discussionExperimental observation showed that by installation of sills, nappe thickness increased from yc/2 to yc, in which yc is critical flow depth. Furthermore, installation of sills reduced angle of imping jet to sedimentary bed from 58 to 34 degree. Consideration of the length of falling jet form the last step of weir to the downstream sedimentary bed indicated that by reduction of the weir slope from 1:2 to 1:3, length of falling jet increased. Comparison of the temporal development of scour depth showed that at the low discharge, installation of sill increase temporal scour depth. However, by increasing flow discharge and corresponding flow velocity over steps, installation of sills reduced temporal scour depth. From different geometry of sills and length of apron, weir of S2Si2LA2 have the best performance and decrease dse/p form 0.23 and 0.45 in range of low and high flow discharge to 0.1 and 0.24. by reduction of the weir to 1:3, installation of sill have not positive effect to reduction of the temporal scour depth.ConclusionComparison of the results of the installation of apron with different lengths on the maximum scour depth in the range of minimum and maximum flow discharge, i. e., relative critical depth (yc/ h) from 0.06 to 0.34, showed that stepped weir with and without sill at a slope of 1:2 showed by installation apron of lengths LA1 (P/3) and LA2 (2P/3), the relative maximum scour depth (dse/p) reduced from 0.23 to 0.19 and 0.11, respectively. By installation of different sills, the relative maximum scour depth decreased to 0.22 and 0.17, respectively. By reduction of weir slope to 1:3, installation of apron with length of P/3 and 2P/3, reduced the relative scour depth to 0.18 and 0.14. by installation of different sills geometries, dse/p reduced to 0.24 and 0.1, corresponding to the length of aprons P/3 and 2P/3, respectively.Keywords: apron, Flow Characteristics, Grade control structures, Stepped weirs, Scour
-
Pages 127-142IntroductionWeirs or spillways are one of the most important types of hydraulic structures that are divided into linear and nonlinear weir categories based on the shape of the plan. The most important types of nonlinear wires are labyrinth wires and piano key weirs that increase the discharge of flow by increasing the length of the spillway crown. These types of weirs are usually made outside the dam body. The most important advantages of these weirs is high flow coefficient, speed in construction and economic efficiency. These weirs are one of the most suitable options for dam weir implementation in free-flow mode. Floods, snow melting, performance changes of hydraulic structures and many other unsteady flow factors are observed abundantly in nature. Therefore, in this study, the discharge coefficient of piano key weirs under the unsteady-gradual varied flow with increasing discharge has been evaluated. Also, in this research, the calibration of discharge coefficient due to changes in the weir height and the effect of weir height changes on the discharge coefficient and other effective hydraulic parameters in the upstream of the spillway under the unsteady-gradual varied flow with increasing discharge has been investigated.MethodologyThe experiments were carried out in a rectangular channel of Islamic Azad University, Isfahan University (Khorasgan) with a length of 10 meters and a width of 0.6 meters. The height of the channel was the same and unchanged along the way, as well as its floor was made of galvanized sheets and its walls were made of tempered glass and completely sealed. Considering the relationships and previous studies and dimensional analysis, the effect of effective parameters on flow discharge coefficient was investigated. In the current research, three types of A-type rectangular piano key weir with variable heights of 10, 15 and 20 cm were used. Other geometrical parameters were constant and experiments done under the unsteady-gradual varied flow with increasing discharge in the flow range of 30 to 50 Lit/s. The experiments has been studied under the range of discharge changes of 5,3 and 1 liter per second and range of time changes of 5,10 and 15 seconds. Therefore, according to the said contents, 27 different modes have been analyzed in this thesis. Flow depth was reported by laser altimeter sensors at the top of the channel. PLC device was used to measure discharge and water head at different times. A magnetic flow meter is attached to the PLC device, which measures the discharge in liters per second and the height of water from the channel floor by sensors installed in millimeters.Results and DiscussionDischarge coefficient under the unsteady-gradual varied flow with increasing discharge was obtained by deriving from the relationship provided by Machiels et al. Considering that the dc/dt value is not known, the relationships of past researchers for the flow discharge coefficient of type A rectangular piano key weir presented. And comparing the percentage of error in each relationship was done. Finally, it was concluded that the relationship presented by Javaheri and Kabiri-Samani had a lower error percentage. And it was derived from this relationship relative to time, until determine the dc/dt value. Then, according to the experimental data and weir specifications of the discharge coefficient under the unsteady-gradual varied flow with increasing discharge, it was obtained. The results showed that with increasing the weir height, the slope of the discharge charts and the height of the water decreased and the slope of the head-discharge diagrams increased. With increasing the height of the weir, the discharge coefficient increased and in contrast to the froud number and the ratio of water height to the height of the weir decreased. As a result, the height of the weir is directly related to the discharge coefficient and is in contrast to the froud number and the height of the water at the inlet and upstream of the weir. According to the results obtained in the unsteady-gradual varied flow with increasing discharge that led to the calibration of the flow, it was found that the calibrated discharge coefficient (average) in three weirs with heights of 10, 15 and 20 cm is a number between 1.693 and 3.776.ConclusionBy comparing three type A piano key weirs, it was found that the weir with a height of 20 cm is more efficient than the weir with heights of 10 and 15 cm according to the higher discharge coefficient. It can also be stated that the higher height weir is much more applicable in floods and high flow discharges and better diverts the flow. In fact, all the results indicate that the height of the weir plays an important role in the amount of the flow coefficient of the piano key weir. And by increasing it, the efficiency of the flow discharge can be increased.Keywords: piano key weir, Discharge coefficient, unsteady-gradual varied flow